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by 

Bart Childs 

ABSTRACT 

This paper is a tutorial discussion of identification 

problems.  The basic principles of one method of identification 

are discussed.  The method of quasilinearization has been 

developed by Richard Bellman and Robert Kalaba and others. 

This method is discussed in some detail with emphasis on 

programming strategies. These strategies are intended to 

improve the utility of a general quasilinearization program. 

Specific strategies are concerned with expansion of convergence 

space, superposition of particular solutions, and convergence 

criteria. 
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Introduction 

System identification is that branch of the physical 

sciences  in which we  answer either of the two closely related 

questions: 

(1) Given enough data to  completely define an existing 

system,  what  is  the system   (generally, what are the 

parameters  of the differential equation(s)   that 

will yield the observed solution)? 

Or 

(2) Given a desired response of an embryonic system, 

what are the proper system parameters that will 

satisfy the desired response in a best fit sense 

and simultaneously minimize a cost function that 

may take on a very general form? 

We will restrict ourselves to problems governed by dif- 

ferential equations.  Those problems governed by algebraic 

equations are satisfactorily covered in many elementary texts. 

mmm 
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The Simplest Identification Problem 

From the introduction,   it  is obvious  that the  simplest 

nontrivial identification problem will be governed by a linear 

first order homogeneous differential equation. 

We will then assume 

y = ay (1) 

subject to 

y(t1) = yl 
•L    1 t>0 

y(t2) = y2 t^t^o (2) 

The solution of the differential equation (2) is 

y = yoe
at (3) 

We now have two unknowns, namely y and a. To determine these 

we write the following set of nonlinear algebraic equations 

ri = V Yn = y.eatl 

(4) 

y, = y.eat2 2  ^ 

Since this problem is exceedingly simple, we can solve for the 

unknowns 

ln(y1/y2) 
a = - 

(t2-t1) 

^(y^/yo) 
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The conclusion can now be reached that, even in the simplest 

form, identification problems are basically nonlinear.  The non- 

linearity is there in spite of the apparent linearity of the 

original differential equations. 

We now take a different view, that is, the original dif- 

ferential equation is nonlinear.  If we rationalize that "a" is 

a function of "t" and is an unknown function of "t" which is 

governed by a simultaneous differential euqation, then we get 

y = ay 
(6) 

a = o 

Actually, we have now cast our system into its true perspective. 

We have two data points and two simultaneous first order non- 

linear differential equations.  That is what we will usually 

expect. 

The differential equation for "a" obviously states that 

it doesn't change with respect to "t". 

II 

Another simple Identification Problem 

Let's take a different look at the simple harmonic motion 

problem.  The governing differential equation is 

x + U = 0 t^O (7) 

The necessary boundary conditions will be taken as 

x(t1) = x1 

x(t2) = x2 t3>t2>t1^0        (8) 

x(t3) = x3 

■ 
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The ordering  for t.   will be  assumed hereafter  and is arbitrary. 

Denoting  /V =  w we  are quickly led to 

x 
x,   = x    cos(a)t,)   + — sin(u)t, ) 1        o 1 w 1 

X 

x0 = x    cosd^t^)   + — sin(cüt0) (9) 

x,  = x    cos(a)t0)   +  —    sin(ü)t,) 3 o v     3 u) 3 

These three nonlinear algebraic equations can be solved by the 

use of the Newton Raphson algorithm or some other suitable 

algorithm. The three unknowns are obviously x , x , and ^. 

(Or in the form shown (/IT" = to)). 

Another set of boundary conditions is of course possible. 

It is possible for boundary conditions to be on the derivative (s) 

of the functions.  Taking the boundary conditions to be 

xCt^ = x1 

x(t2) = x2 (10) 

x(t3)   = x3 

Then the necessary algebraic equations  are 

x,    - -x  a) sin(wt, )   + x_ cos(a)t,) 1 o 1 o i 

x-  = -x u sin(wt0)   + x^ cos(wt0) (11) 
2 O £ O I 

X 

x-  = Xä cos(u)t0)   + — sin(a)t,) io Ja) J 

The degree of difficulty of both these problems is essentially 

the same. The solution of either set of nonlinear algebraic 

equations requires about the same number of calculations, 

strategies, and programming skill. 

^■aMM_HMMHBBa 
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In a manner similar to the earlier one, we can also formu- 

late this problem as a set of nonlinear differential equations 

x + 5x = 0 
(12) 

i = o 

We will find it convenient later to always write the set of 

differential equations as a set of first order equations.  Thus, 

with the definition stated in the first of the following 

equations we have 

x = z 

z = -x? (13) 

k =  0 

If we attempt a slight variation of the preceeding problem 

and add a damping term, the problem will become seemingly formid- 

able in an analytical identification sense. The governing 

equation is 

x + yx + Cx = 0 (14) 

As you might guess, if the damping and frequency terms are un- 

known, we automatically write 

x = z 

z = -yz - Cx ^15j 

I =  0 

y = 0 

The next four topics of discussion will be background to 

aid in solving the nonlinear multipoint boundary value problems 

we have been formulating. 

'■ ■ *'-*4&yi 
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The Newton Raphson Method 

We are now going  to discuss a generalization of Newton's 

method of tangents and later we will generalize this a bit more. 

First,  let's review the method of tangents and point out 

the properties of the generalized methods  that are desirable 

and difficult to prove. 

Consider the transcendental function cos(x)  and assume that 

we wish to find its first zero,  and that from some obscure 

"a priori" knowledge we  find that the  solution  is near one 

radian.    We expand our equation 

f(x)  = cos(x)  =  0 (16) 

in a Taylor series about the approximate root x 

(x-x ) (x-x ) 
f (x) = f (xa) + f'(xa)   1;

a + f'(xa)   2.
a  +...   (17) 

2 
Neglecting the terms of order (x-x )  and higher we get the 

et 

approximation 

f (x)  + f'(xj (x-xj   :  0 (18) 

Then 

x-xa = - f(xa)/f'(xa) 

x = x,  + Ax (19) a a 
Axa = -  f(xj/f" (xj 

d ad 

The indicated algorithm is generally written as 

—W—M——JM — IWIlWIi/^. ■■*.<»&—..»..■ 
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The last equation states what Is called the Newton Raphson 

algorithm for a one dimensional problem. 

The algorithm for the zero of the cosine function indicated 

does reduce to 

x«4.i = x« -(-cot(x_)) « x + cot(x) n+i   n       n     n      n (21) 

For the initial condition mentioned, Table I shows the convergence 

on the true answer which we already knew to be n/2. 

TABLE I 

Newton Raphson Data of Eg. (21) 

n Value of x„ n 

0 1.0000 

1 1.6421 

2 1.5687 

3 1.5698 

4 1.5706 

• • • 

oo 

• • • 

1.5708 

The table was constructed by interpolating the values given in 

the CRC Handbook. 

Notice that in the early iterations that there was an 

oscillation about the true answer.  However, as the final 

solution was approached, the convergence was monotone.  R. Kalaba 

has proven that often the method gives quadratic and monotone 

convergence in the limiting iterations. An approximate inter- 

pretation of quadratic convergence is that at each iteration 
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the number of significant figures is doubled. Of course, that 

implies that an extremely high number of significant figures 

must be used in the calculations.  Because of the "finiteness" 

of the tables used, the quadratic convergence property is not 

illustrated by the above table.  It will also be shown by the 

following refinement that the monotone behavior is accidental. 

The results of solving the same problem, but having it 

done on a digital computer using 16+ significant figures in each 

calculation are shown in Table II. Notice that the quadratic 

convergence is illustrated by this data.  An obvious question is 

TABLE II 

Improved Newton Raphson Data 

n 

0 

1 

2 

3 

4 

5 

Value of x Eq.(21) n 

ilooooooooooooooo 
1.6|42092615934331 

1.570|675277161251 

1.570796326795|488 

1.570796326794897 

1.570796326794897 

what is the accuracy of the sine and cosine subroutines? The 

final answer is accurate to sixteen significant decimal digits. 

Also notice that there is an oscillation about the answer again. 

An interesting variation is to apply the algorithm to a 

problem involving complex variables.  In approaching the solution 

of the biharmonic equation where two dimensional Cartesian co- 

ordinates with at least one of the coordinates having finite limits 

via Laplace or Fourier transforms, it is often necessary to 

. MP UStlMAMMMR 
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know the zeroes of the transcendental. 

sin(Z) + Z » 0 (22) 

The Newton Raphson algorithm for this problem becomes 

z«Ai = Z« " {sin(Z ) + ZJ/U + cos(ZJ) (23) n+l   n       n    n n 

Obviously the problem now is arithmetical except for the 

question of initial guesses.  Let's assume that a little bird 

flew past and said, "Awkl, the first non zero root is near 

4 + i2 and each successive root will be approximately 2n 

further out the real axis." The name of that little bird is 

experience. 

Table III is a list of the values of Z that will be 

generated in obtaining the first five non zero roots with the 

aid of the little bird's information. The improvement of an 

answer is stopped whenever the modulus of the last correction 

is less than 10~ . 

It is obvious that the convergence is rapid for the above 

problem.  The interpretation of "doubling the number of signi- 

ficant figures" with each iteration now raises a question. Which 

significant figures are doubled, if any? A rule that sometimes 

applies is, "the largest element's significant figures are doubled". 

The example was included for tutorial purposes only. The 

most efficient method of solving the above problem includes 

asymptotic studies of Eq. (22) . 

Consider the problem of solving a set of nonlinear algebraic 

equations in "N" real unknowns.  We will write this as the vector 

equation  ^ ^   ^ 

R (X) = 0 (24) 

where the right hand side is the null vector. 

• ■<*-.■iMi,i*Av', 
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TABLE   III 

Complex Newton Raphson Data   (Eg.   (22) 

Root Index n 1  Real (Z ) n 1  Imag. (Zn) 

1 0 4. 2. 

1 4.2793583E 00 j   2.2714714 

2 4.2143169E 00 2.2488951 

3 4.2123884E 00 2.2507277 

4 4.2123922E 00 2.2507286 

2 0 1.0492392E 01 |   2.2507286 

1 1.0938640E 01 3.6368255 

2 1.0801822E 01 3.2135148 

3 1.0721907E 01 3.1062368 

4 1.0712570E 01 3.1031115 

5 1.0712537E 01 3.1031487 

3 0 1.6992537E 01 3.1031487 

1 1.7109956E 01 3.6695510 

2 1.7077178E 01 3.5574931 

3 1.7073389E 01 3.5511021 

4 1.7073365E 01 3.5510873 

4 0 2.3353365E 01 3.5510873 

1 2.3411799E 01 3.9114766 

2 2.3398998E 01 3.8601203 

3 2.3398356E 01 3.8588097 

4 2.3398355E 01 3.8588090 

5 0 2.9678355E 01 3.8588090 

1 2.9714814E 01  j 4.1235346 

2 2.9708304E 01 4.0941315 

3 2.9708120E 01  | 4.0937050 

4 2.9708120E 01  1 4.0937049 
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The Newton Raphson approach Is to expand the function 

about some approximate root X . 

Then 

R(Xa) + 4 <*a) <* - X } + ...= t{i)   I I 
'*'       ti   " a 

(25) 

Hopefully assuming the questioned equality and neglecting the 

Indicated higher order terms yields 

9R{XJ -1 
jU *   - {'—^.' 

3X 
}        R(Xa) (26) 

or In terms of the generally expected subscripts the algorithm 

is 

JL+1 = Xn - { 4 >n  ^n <27) n+i   n    »A n  n 

The derivative quantity is a square matrix of order "N" 

and we hope also of rank "N".  In general it is and we seldom 

need consider the case where it might be singular in the 

neighborhood of the solution X. 

Let's assume the problem is to solve the equations 

x1 + x2 + X3 = 3 

Then 

xl "*" 3x2 + 4x3 ~   8 

x2 - X3 = 0 

r1 = x1 + x2 + X3 - 3 

r, = x,  + 3x2 + 4X- - 8 

r3 = x2 - x3 

(28) 

(29) 

,.,*., 
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The square matrix or as we will call It, the "Jacoblan 

matrix" for this problem is 

j   il 
n  3Jt n 

1 

2x. 

1 

3 

2x2 -1 

n 

(30) 

Assuming the null vector for the first approximation X , 

-1 
^1 = ^o + (-v     K 

Substituting 

-1 

^-t    + 

\ 

0    -3     -4 
0       0+1 

-3 

-8 

0 

(31) 

(32) 

The successive solution vectors,  as calculated on a 7094, are 

shown in Table IV. 

TABLE IV 

Elements of Solution Vector at Each Iteration 

n 1        Xl 1       X2 1       X3 
0 0. 0. 0. 

1 .33333333 2.6666667 1.5E-8 

2 .72191529 1.4825046 .79558007 

3 .94095068 1.0736089 .98544037 

4 .99710697 1.0026408 1.0002522 

5 .99999356 1.0000044 1.0000020 

6 .99999999 1.0000000 1.0000000 

»■.•tr»(it** •••—..••*• 
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The elements of the residue vector,  R,  are shown in Table V. 

TABLE V 

Elements of  Residue Vector at Each Iteration 

n rl r2 1            ^ 
0 -3. -8. 0. 

1 1.49E-8 1.11E-1 7.11 

2 1.49E-8 1.51E-1 1.40 

3 7.45E-9 4.80E-2 1.67E-1 

4 0. 3.15E-3 5.04E-3 

5 4.47E-8 8.26E-6 6.93E-6 

6 0. 0. 0. 

The solution shown above might cause questions as to whether 

the convergence is quadratic and monotone.    The quadratic question 

is needless because the convergence is obviously fast.    The 

monotone question is meaningful at this  time.    Monotone conver- 

gence in the one dimensional case meant that the solution was 

always approached from the same side.     In other words AX was 

always of the same sign.    The generalization of this is that 

AXnAXn-l is positive when monotone and negative when oscillating. 

In the limiting iterations,  the above was  indeed monotone. 

Referring to the not quite so simple identification problem, 

we will write   (see Eq.   (9)) 

R(x)  = 

*1 cos(x3*0)   + £=■ sin(x3«0)   - 1.00000 

X2 Xj^ cos(x3'0.5)  + j=- sin(x3«0.5)   - 1.35701 

x2 
x,   cos(x,'l.)   + — sin(x.'l.)   - 1.38177 

1 3 x3 3 

(33) 
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The above equations are for the harmonic oscillator having 

mit initial conditions and a unit circular frequency (x, ~ x
0 ~  ^' 

;<2 = x = 1, x3 = w = Z^
-= 1) solution for t = 0, 0.5, and 1.0 

are then used. 

Table VI is a list of the vector X starting from an initial 

guess in which each element is 50% the final solution. 

TABLE VI 

Newton Raphson Data 

n Xl x2 X3 

0 0.5 0.5 0.5 

1 1.00000 0.98410 1.86895 

2 1.00000 0.74143 0.92949 

3 1.00000 1.00173 1.00862 

4 1.00000 0.99999 1.00002 

5 1.00000 1.00000 1.00000 

With nonlinear equations such as these, there is always the 

possibility of finding a solution that isn't desired. Using an 

initial guess vector of (0, -2,2),  the same program that converged 

on the nice answers above converged upon the answer (1, -36.7,-36.7) 

Let's now consider the solution of a function to be optimized 

subject to a set of equality constraints. For the simple first 

example we want to consider only functions whose constraints are 

linear and the function to be optimized is of a quadratic norm 

type. Assuming a two dimensional problem, we write typically 

xl + ax2 = ^ 

(yx- + ÖXj-ö)  = minimum 
(34) 

MH 
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By differentiating the function to be minimized with respect 

to x,, we get 

2Y(YX1 + 6x2-e) = 0 (35) 

Thus 

Xj^ + ax2 = ß " I       a ' Xl " e 1 

YXj^ + 6x2 = + e 
or 

Y       6 .X2. 

s 

e 1 

2.   _ ßfi - a6 
xl       6     - ay 

x, 
i 

e - BY 
!       6   -   ay 

(36) 

which is nice as long as 6 ^ ay which is the usual case.  Before 

this simple problem lulls us into trouble, let's point out that 

the equation resulting from differentiating with respect to Xj 

would have been 

26(YX1 + 6x2 - 9) = 0 (37) 

which is equivalent to the one we had. 

Considering a problem in three or more dimensions we need 

to be careful.  Assume a constraint 

N 
Z  alixi = cl (38) 

If we assume a cost function to be minimized, we can take it to 

be of the form 

M  N 2 
E  (Z a . .x. - c .)  = cost 

j=2  i  ^ i   ^ 
(39) 

where M > N - 1. 

We supposedly can differentiate the cost function with respect to 

. m* 
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each element of X and obtain N - 1 or N linearly independent 

equations, depending on M. Because there can be only N linearly 

independent equations, one might be led to believe that any N - 1 

of the equations will give the same solution when coupled with the 

constraint equation given above. That isn't so because the right- 

hand-sides can be picked at random. Regardless, the best solution 

will probably be obtained by an iterative method. 

For our purposes we can assume that the above least squares 

type approximation is adequate. The fact that each of the equa- 

tions from minimizing the error or cost term involves all the 

data points is responsible for this.  It should be expected that 

any iterative scheme would need this type approximation for a 

starting approximation anyway. 

IV 

Function Space 

This section will be very incomplete.  It is included for 

emphasis of a point that would require great labor to explain 

with any significant rigor. Function space is, uh, a very 

nebulous abstraction when an attempt is made to visualize it in 

the Cartesian frame of mind we are accustomed to. Some dis- 

cussion of function space is needed because we are going to 

differentiate expressions with respect to functions of variables 

and not with respect to variables. Of course, we can always 

rationalize that a variable is simply a special case of a function. 

The point is though, we are to be differentiating with respect to 

continuous dependent functions of an independent variable. This 

■-fjmii^»Kms^,'^!W~" 
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function space might be thought to have independent variables 

that are the functions of the true independent variable. Another 

independent variable might be an iteration index where we are 

continuously updating approximations to these functions. Think 

about it??? A discussion of function space is in Lanczos' text 

entitled Linear Differential Operators. 

Some appreciation of function space is necessary for complete 

confidence in performing Newton-Raphson-Kantorovich expansions in 

function space. We'll call them NRK expansions. 

We have written some vector differential equations earlier. 

Now, we're going to differentiate these vector equations with 

respect to some of the functions within. The equations are like 

y = I (y,t) (40) 

The "independent variables" in this function space, that we're 

about to expand this equation in, are the elements of the vectors 

y and y.  Now, both sides of the equation should be expanded 

with respect to the totality of y and y.  However I , the LHS is a 

function of y only and the RHS is a function of y only.  This 

is one reason why we always write the equations in this first 

order form.  Let's diverge for a moment. 

Recall that: 

The derivative of a vector with respect to another vector 
is a matrix or maybe it's a second order tensor.  If both the 
differentiated and differentiating vector are the same, the 
matrix is the unit or identity matrix.  If they are not the same, 
the resulting second order tensor (?) is called the Jacobian 
Matrix.  The second derivative of a vector with respect to another 
vector gives a result that has three subscripts. 

■ '■^■•^'-^fmr-^rtrvi-.rn^)^ 
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Anyway 

y = I (y,t) 

expanding about the nth  iteration where y     and y    are known 

(40) 

n 
3y 

(v , - y jn+l  Jn ) + . . . 

n 

(41) 

■y 
n n 

(y ^T - y ) + .. 'n+1  -^n 

We have neglected .-.11 the higher order terns, the first of which 

on the right-hand side cannot be written like 

32l 

3yZ Jn 
^n+1 " yn) (42) 

but must be written as 

a2! 
cy n 

{yn+i - V (yn+l  " 
yn) (43) 

where the order in which the matrix multiplication or tensor 

contraction must be performed is  shown by the parentheses. 

Recognizing tho  unit matrix or  identity operator  resulting 

from differentiating y with  respect to  itself  and making a slight 

introduction  of  J     for  the Jacobian matrix  on the RHS,  we easily n z 

write 

yn+l - Jn ?n+l  
+  !n " Jn ^n (44) 

ÜIM *.    - .. ^^MttäiAfmi^4xäk^ v 
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which with an introduction of obvious nomenclature can be written 

(some would  say,   "simplifies to") 

y .-i = J   y ^i + F 45) ^n+l n -^n+l n 

Henceforth,   if  it is  implied that NRK's are relevant,  we auto- 

matically  transform a  nasty nonlinear  equation 

y = I   (y,t) (40) 

into  the  simple 

?„.,   = Jn yn,-1   + Fn (45) Jn+i n ^ n+i n 

which is linear with known variable coefficients and a known 

forcing function F .  An obvious problem dealing with the first 

assumption for y will be dealt with later. 

v 

Numerical Integration of Initial Value Problems 

The wheel has suffered through more re-inventions in the 

field of numerical integration than any sane person would like 

to count.  The necessary information presented here is covered 

in great detail, often with so-called "rigor", in no less than 

one-hundred-thirty-seven and one-half good books.  The reason 

it appears here is for the sake of sameness in the names 

applied to the methods u^ed.  Occasionally there is somebody 

from a "culturally and socially deprived area" who may not know 

about these techniques. 

I assume that we all know about the forward, backward, and 

central difference approximations to first derivatives. We have 

been writing our differential equations in a first order form 

^mää 
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and will continue to do so.  Because of this, we only need dif- 

ference approximations to first derivatives.  It is conunon know- 

ledge that the error term for forward and backward difference 

2 
approximations is of order h while the order is h for central 

difference expressions.  The following characteristics of these 

basic approximations should be recognized: 

(1) Forward difference methods 0(h) are self-starting 

and yield explicit formulae. 

(2) Central difference methods have to be started by 

other means but do yield explicit formulae. 

(3) Backward difference methods do not yield explicit 

formulae for nonlinear differential equations. 

The simple forward difference methods have the most 

advantages but they also have error problems, relatively.  The 

recurrence formulae for a problem like 

y = I (y,t) (40) 

is 

yj+1 - Jj + h! (y^t.) (46) 

From the known initial conditions of this initial value problem, 

y is known and then all other y's can be calculated.  A simple 

iterative form that will retain all desirable characteristics of 

the forward difference method and gain in accuracy at the expense 

of speed, only, is called a predictor corrector method. 

The predictor corrector method is easily illustrated by the 

following flow diagram 

-rivmS^,,^?m*<«w«i«*^'»»*)^^<«w»'^^- •' 
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Input y0, h, t0 

*** ?   Up' to) 

y <c y 

^ijlifl 

•^ 

lyc<* yr + h g 

y   •< y 

y    ■," y i. 

Yc*  yr  + hg 

e<5: nonn(y     - y  )/nonn(y  ) 
  ^-, p c 

Output? 

y   <S:   y 

^ ^ V + h 
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The PC method abo e 11as th a dvantages of the forward 

difference method outl j n d p r i us l r , n error of (~) 2 and 

is self-starting. t i mo- han the centra l dif-

ference method of the sam c ura y in computing time . However, 

its self-starting ch ra i u sua lly re ~ rd enough to 

offset that expen 

We will have need "ntegrate quations like the one 

shown above and equ a t ion lik 
. 
+ -+ 
y = J (t) + F ( ) ( 4 7) 

This "new type" of equa n is s impl a line ar differential 

equation with variab le c oeffic i nts, namely the matrix J(t) a 

and a forcing function F( ) . Whe n this is a deterministic 

form, there are essent i a l l y n un s ~ered q ue stions if we .c: r e 

competent enough such t h :=t t h pr vious br ief discussion o n 

numerical integration wa b ing . llo " v r!, we are not 

going to be discuss ing d e e m1n i i c f rms . The ma tr ix J(t) 

and the vector F(t) il n t i ns of di screte data (actually, 

they will be formed from th di · ret solut i ons of y = 1(y,t)). 

The best means o f int grating t h e non - de ·terministic pro-

blems is an open questio he PC me th • outli ned above is 

adequate. The valu s , i (t ) and F (t) used will be at the 

half-step of the integr a ion s tep under consideration. 

Many refinements an be mad t o this lacksadasial procedure. 

However, these refinem nt s rn a be i c o nsistent with the accuracy 

of the problems in mind . For th e reasons and others, Runge-
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Kutta and Adams-Moulton techniques are often not used for the 

problems in mind.  For problems requiring an extreme accuracy, 

there are generally better methods than the RK and AM schemes. 

VI 

Linear Multipoint Boundary Value Problems 

as Initial Value Problems 

We are going to discuss an old, old method for solving these 

problems.  It is frequently used in analytic studies, but, for 

some reason it is relatively rare in numerical integration studies. 

Consider a linear differential equation of Nth order 

y = J y + ? (48) 

that  is subject to  at  least N boundary conditions.    It  is elemen- 

tary  that the  solution may be written  in terms  of a particular 

solution plus  a linear combination of N  linearly independent 

homogeneous  solutions.     The particular solution  is the solution of 

^o)   =  J y(o)   +  F (49) 

subject to a  finite  initial condition vector y        (o).     The homo- 

geneous  solutions  are  solutions of 

y(k)   = j y(k) 1  <  k  < N (50) 

subject to linearly independent finite  initial  conditions.     For 

the  initial conditions  to be  linearly independent, the  following 

must  hold; 

det    (j'lj      l\l\       ...      ?»)    ^0 ,51, 
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This is a generalization of what is commonly referred to as the 

Wronskian monstrosity. 

Thus,  we can unhesitatingly write 

J = ;(°)  +   I      ak y(k' (52) 
k=l       K 

where the combining coefficients, (a.), must be determined in 

such a manner so as to satisfy the boundary conditions.  If there 

are N boundary conditions, the a's will be unique.  If there are 

more than N boundary conditions, the a's will also be dependent 

upon the minimization of the norm chosen. 

This method has the obvious advantage of accuracy and ef- 

ficiency in storage.  It often has efficiency in execution time 

too. With a little ingenuity, about all that has to be stored 

in an (N+l) by (N+2) matrix for the solution of the exactly 

determined problem.  For a problem with P boundary conditions, 

a (P+l) by (N+2) array must be stored for use in calculating 

the a's. 

The initial conditions of the particular solution should 

reflect the maximum knowledge of the true initial conditions. 

If the a's are all zero, then the initial conditions used are 

the true initial conditions for the problem.  However, the 

initial conditions of the homogeneous solutions have many 

possibilities. An obvious valid choice for the vectors y)0»» 

1 < k < N is the columns of an identity matrix. This is a very 

simple nonsingular matrix and the columns (or rows) of any non- 

singular matrix satisfy the generalized monstrosity given above. 

tmmm 
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However, practicality and generality occasionally wreck the simple 

plans of men.  I've encountered some problems in which it is 

necessary to use the following scheme.  Use the same vector that 

is considered apropos for the particular solutions except multiply 

the kth element of the vector by some scalar. This scalar has 

few restrictions but something positive, nonunity, and less than 

two seems preferable.  Generally 1.1 to 1.5 seems very good.  A 

further exception is that if the kth element is null, use some- 

thing other than zero for that element, say one. 

Although the one shot procedure described theoretically 

works, it can be rendered useless by roundoff error. It is 

therefore a good procedure to make it a repetitive procedure 

such that we are seemingly trying to find the initial conditions 

of the problem. When we have obtained the true initial conditions, 

all the a's go to zero or some negligible values. 

A further improvement is to superimpose particular solutions 

of Eq. (48).  To do this, we write 

y - I' gk y
(k' (53) 

k=l  K 

where the elements  of y are chosen to satisfy the boundary condi- 

tions and the auxiliary condition 

n+1 
E    gv  =  1 (54) 

k=l    K 

This auxiliary condition obviously states that in the superposition, 

the forcing functions must sum to be only F(t). This strategy 

does add greatly to the control of roundoff error in the super- 
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position of solutions. The initial conditions used are those 

previously discussed, except, the solution y    is now y 

If the true initial conditions are used for y 

(55) 
^n+l = 1 

g. =0 l<j<n 

VII 

Quasi linearization 

We will now attempt to tie all these things together to 

attempt to solve the identification problems mentioned pre- 

viously.  We wish to solve problems that have nonlinear solu- 

tions.  The governing differential equations are often linear, 

but, the problem is nonlinear because as shown in the simplest 

identification problem, the desired answers are not linear combi- 

nations of the given data.  We have discussed Newton Raphson 

techniques whereby we could solve nonlinear problems by successive 

linear steps. We have also discussed one of many methods for 

solving linear multipoint boundary value problems. 

My guess as to what is quasilinearization is that it is 

the totality of the following computational schemes and portions 

of computational schemes: 

1) Formulate the differential equations in the first 

order coupled form as shown earlier. 

2) If there are unknown parameters, supplement the 

above differential equations with the null dif- 

ferential equations described earlier. 
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3) If there are more data points than unknowns,  select 

a norm which will be used as a "goodness of  fit" 

measure. 

4) Do a Newton-Raphson-Kantorovich expansion of the 

nonlinear equations  to obtain a related set of 

linear differential equations. 

5) Solve  the set of linear variable coefficient dif- 

ferential equations  subject to the boundary condi- 

tions  that may be exact and/or best fit.     This 

solution will generally be obtained as a  sequence 

of  initial value problems  to have the highest 

reasonable degree of accuracy.    The procedure 

in  this  step is  repeated until the  initial  condi- 

tions  ore known for the nonlinear differential 

equatious such that the  solutions generated for 

ch^se  initial conditions  satisfy the ^iven boundary 

conditions.     If the problem is not exactly determined, 

the question arises  as  to what does satisfy mean.? 

This  question has to be answered for each problem. 

VIII 

Applications 

The applications of  such methods  are ubiquitous.     The 

essence of engineering design might be said to be,   "select a 

system governed by the  laws of physics and that benefits mankind 

with economics  as  a constraint".     Generally  in engineering design 

«MMMMta 
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the benefit to mankind is established before we get the problem. 

Thus, we have only to formulate the laws of physics, which for 

simple mechanical problems is simply Newton's law, and pick 

the parameters that make it economical.  Let's mention a few 

examples: 

1) For some unknown reason, it is beneficial to mankind 

to fly out in space.  A space vehicle is attracted by 

the earth's gravitational field.  There is a potential 

function whose gradient is the acceleration due to 

gravity.  The acceleration due to gravity is not a 

constant for a given radial distance from the earth's 

center.  Identification of the Fourier coefficients 

of an eigenfunction expansion of this potential should 

be possible via the means we have describee'. 

2) A control system that performs a very simple function 

like raising a bulldozer blade is very nonlinear and 

might be represented by 

• 2     '2 
x + a, x + a2x + a3x x + a.xx = a5 u(t) 

The a's are functions of blade weight, pump and pipe 

sizes, oil properties, pressures, etc.  It would be 

desirable to pick the a's such that a desired system 

response is obtained and economy is also achieved. 

This could be done if the proper variation of the a's 

can be controlled. However, these a's are not yet 

known.  They can be determined by measuring the responses 
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of real systems.  From these responses, empirical 

values of a's can be obtained. 

3)  Similar problems abound in almost all process plants, 

control systems, and any time variant system. 

IX 

Data Structures 

The concepts of data structures should be applied to most 

large programs on digital computers.  These concepts involve 

knowing the manners in which data are stored internally in digital 

computers. 

To visualize a very simple example, consider a Newton 

Raphson algorithm like 

-*.     -»-     -i ->■ 
X .. = x  - J    X n+1   n   n   n 

In the calculation procedure, the usual thing to do would be to 

have two vectors reserved for the x and x ^..  Uhen x ., is n     n+l        n+1 

calculated and convergence has not been achieved, the obvious 
-*■ 

thing to do would be to store the x , in the space used for 

x  on the last iteration.  A frightfully more efficient scheme 

would be to interchange the names of x L, and x . ^ n+1     n 

Ideas of this type are easily implemented if one is familiar 

with data storage characteris+ics.  Such methods could reduce 

execution times of many quasilinearization programs by up to 30%. 
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X 

Extensions 

The extensions that can be made to the groundwork we have 

laid here are numerous. 

Typically: 

1) Formulating general rules governing cost functions. 

2) Inclusion of norms other than least square norms. 

All other norms will require iterative solutions 

within each iteration.  Is this expense worth it? 

3) Development of high accuracy integration schemes 

for the variable coefficient differential equations. 

Problems like the geopotential problem demand it. 

4) Use of symbol manipulation compilers to reduce the 

effort in formulating the first order and variable 

coefficient differential equations. 
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